Neuro-Oncology<\/em><\/a> journal, shows that neurons respond to Cisplatin damage by generating a series of metabolic changes. These changes induce them to enter in a kind of permanent hibernation, called senescence, which would be causing neuropathic symptoms, and not the direct death of neurons as previously believed.<\/p>\nThe study shows the overexpression of the p21 protein<\/strong> induced by the administration of Cisplatin. This is a protein that in response to injury can regulate both, senescence and cellular apoptosis processes. However, the study shows that the pathways involved in apoptosis are not activated. Furthermore, both electron microscopy studies and molecular markers of cellular senescence have confirmed that neurons show morphological characteristics of senescence after treatment with Cisplatin.<\/p>\n\u201cNeurons are the paradigm of a highly differentiated cell that cannot replicate, and senescense processes, classically described in replicative cells, are more controversial in non-replicative cells. Therefore, our work contributes to other recent studies that point that senescence processes can be relevant in different neurological pathologies<\/em>\u201d says Dr. Esther Udina, researcher at the Institut de Neuroci\u00e8ncies of the UAB (INc-UAB) and co-author of this research.<\/p>\nUntil now, clinical trials of neuroprotective treatments aimed to alleviate platinum neuropathy have failed. Dr. Bruna concludes that “this could be because the treatments were focused on preventing neuronal apoptosis,<\/em>” and adds, “this study provides new targets to alleviate platinum neuropathy. These neuroprotective treatments, administrated with chemotherapy, could prevent the onset of neuropathy, and are less likely to interfere with antitumor efficacy than those aimed to prevent apoptosis”. ” In this way, chemotherapy with Cisplatin would not be limited depending on the appearance of this common adverse effect.<\/em>”<\/p>\nThese studies used a mouse model that perfectly mimics the clinical characteristics of the patients. By a cell separation method, each neuron of the dorsal spinal ganglion was individualized and, the genes that were expressed at each moment were studied, with the subsequent validation with protein expression. It is an innovative method that has never been used in this field of research.<\/p>\n","protected":false},"excerpt":{"rendered":"
Cisplatin induces senescence of peripheral neurons through overexpression of the p21 protein, which would explain the neuropathy<\/p>\n","protected":false},"author":8,"featured_media":14705,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-site-content-layout":"","site-content-style":"default","site-sidebar-style":"default","ast-global-header-display":"","ast-banner-title-visibility":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"default","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":"","astra-migrate-meta-layouts":"default","ast-page-background-enabled":"default","ast-page-background-meta":{"desktop":{"background-color":"","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-opacity":"","overlay-gradient":""},"tablet":{"background-color":"","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-opacity":"","overlay-gradient":""},"mobile":{"background-color":"","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-opacity":"","overlay-gradient":""}},"ast-content-background-meta":{"desktop":{"background-color":"var(--ast-global-color-5)","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-opacity":"","overlay-gradient":""},"tablet":{"background-color":"var(--ast-global-color-5)","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-opacity":"","overlay-gradient":""},"mobile":{"background-color":"var(--ast-global-color-5)","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-opacity":"","overlay-gradient":""}},"footnotes":""},"categories":[180,264,209],"tags":[],"class_list":["post-14704","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-cancer","category-molecular-mechanisms-and-experimental-therapy-in-oncology-program-oncobell","category-neuro-oncology"],"publishpress_future_action":{"enabled":false,"date":"2025-04-26 00:23:25","action":"change-status","newStatus":"draft","terms":[],"taxonomy":"category"},"publishpress_future_workflow_manual_trigger":{"enabledWorkflows":[]},"_links":{"self":[{"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/posts\/14704","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/users\/8"}],"replies":[{"embeddable":true,"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/comments?post=14704"}],"version-history":[{"count":0,"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/posts\/14704\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/media\/14705"}],"wp:attachment":[{"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/media?parent=14704"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/categories?post=14704"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/idibell.cat\/en\/wp-json\/wp\/v2\/tags?post=14704"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}