{"id":2669,"date":"2019-10-07T14:19:01","date_gmt":"2019-10-07T12:19:01","guid":{"rendered":"https:\/\/idibell.cat\/?page_id=2669"},"modified":"2024-02-16T09:10:53","modified_gmt":"2024-02-16T08:10:53","slug":"physiology-and-pathology-of-the-functional-relationship-between-glia-and-neurons","status":"publish","type":"page","link":"https:\/\/idibell.cat\/en\/research\/translational-medicine-area\/genes-disease-and-therapy-program\/physiology-and-pathology-of-the-functional-relationship-between-glia-and-neurons\/","title":{"rendered":"Physiology and pathology of the functional relationship between glia and neurons"},"content":{"rendered":"\n

\n\t\tPhysiology and pathology of the functional relationship between glia and neurons\n\t<\/h1>\n

\n\t\tSummary\n\t<\/h3>\n\t

Chloride is the most abundant anion in organisms. The plasma-membrane chloride channels of the CLC and LRRC8 family are important for various physiological functions, such as regulation of nerve- and muscle-cell excitability, both in terms of cell-volume regulation and transepithelial transport. The physiological roles of various chloride channels are illustrated in human hereditary diseases caused by mutations in the genes or auxiliary subunits which regulate their functions. This group’s aim is therefore to try to understand chloride-channel regulation in order to provide therapeutic solutions to patients affected by this. The group has a multidisciplinary approach, applying imaging methods, electrophysiology and biochemistry in mice and zebrafish models.<\/p>\n

73<\/h2>\n

Publications<\/h2>\n\t\t\t\t\"rat_hippocampus_stained_with_antibody_to_neun_green_myelin_basic_protein_red_and_dna_blue\"\n\t\t\t\t\tStrategic lines<\/a>\n\t\t\t\t\t\t\t\t\t\t\tExpand<\/i><\/a>\n\t\t\t\t\tThe role of glial chloride channels in brain homeostasis.
\nRare genetic diseases caused by chloride-channel dysfunction.
\nRegulation of ion channels by regulatory proteins. Structure-function of ion channels and development of specific inhibitors targeting ion channels\n\t\t\t\t\t
Selected Publications<\/a>\n\t\t\t\t\t\t\t\t\t\t\tExpand<\/i><\/a>\n\t\t\t\t\t

Wang,BB;Xu,H;Isenmann,S;Huang,C;Elorza Vidal,X;Rychkov,GY;Est\u00e9vez,R et al, Ubr1-induced selective endophagy\/autophagy protects against the endosomal and Ca(2+)-induced proteostasis disease stress<\/strong>., Cell. Mol. Life Sci., 2022;79(3):167-167, doi:10.1007\/s00018-022-04191-8<\/p>\n

Pla Casillanis,A;Ferigle,L;Alonso Gard\u00f3n,M;Xicoy Espaulella,E;Errasti Murugarren,E;Marazziti,D;Est\u00e9vez,R, GPR37 Receptors and Megalencephalic Leukoencephalopathy with Subcortical Cysts<\/strong>., Int. J. Mol. Sci., 2022;23(10):doi:10.3390\/ijms23105528<\/p>\n

Formaggio,F;Fazzina,M;Est\u00e9vez,R;Caprini,M;Ferroni,S, Dynamic expression of homeostatic ion channels in differentiated cortical astrocytes in vitro<\/strong>., Pflugers Arch., 2022;474(2):243-260, doi:10.1007\/s00424-021-02627-x<\/p>\n

Alonso Gardon M, Elorza Vidal X, Castellanos A, La Sala G, Armand Ugon M, Gilbert A, Di Pietro C, Pla Casillanis A, Ciruela F, Gasull X, Nunes V, Martinez A, Schulte U, Cohen Salmon M, Marazziti D, Estevez R. Identification of the GlialCAM interactome: the G protein-coupled receptors GPRC5B and GPR37L1 modulate megalencephalic leukoencephalopathy proteins<\/strong>. Hum. Mol. Genet. 2021;30(17):1649-1665. doi:10.1093\/hmg\/ddab155.<\/p>\n

Bosch A, Estevez R. Megalencephalic Leukoencephalopathy: Insights Into Pathophysiology and Perspectives for Therapy<\/strong>. Front Cell Neurosci. 2021;14627887-627887. doi:10.3389\/fncel.2020.627887.<\/p>\n\t\t\t\t\tSelected Projects<\/a>\n\t\t\t\t\t\t\t\t\t\t\tExpand<\/i><\/a>\n\t\t\t\t\t

– 18MAR001. Development of novel inhibitors of the chloride channel LRRC8\/VRAC, a novel player in ischemia. (201710.30). FUNDACIO IDIBELL; FUNDACI\u00d3 LA MARAT\u00d3 DE TV3; UNIVERSITAT DE BARCELONA. Importe Concedido:199.936,53\u20ac 2018-2021. IP:ESTEVEZ POVEDANO,RAUL.<\/p>\n

– Regulation of chloride channels in health and disease. UB. MICINN. 242000 \u20ac. 2019-2021<\/p>\n

– Estudios iniciales para determinar la estructura 3D de MLC1. CIBERER. 40000 \u20ac 2020-2021<\/p>\n

– Characterization of a zebrafish model of myotonia congenita. CIBERER. 40000 \u20ac 2021-2022<\/p>\n\t\t\t\t\"Estevez\n

\n\t\tEstevez Povedano, Raul\n\t<\/h4>\n

\n\t\t\n\t\trestevez@idibell.cat\n\t\t<\/a>\n\t<\/h4>\n

\n\t\tPrincipal investigators\n\t<\/h2>\n\t\t\t\t\"Estevez\n

\n\t\tEstevez Povedano, Raul\n\t<\/h4>\n

\n\t\t\n\t\trestevez@idibell.cat\n\t\t<\/a>\n\t<\/h4>\n\t\t\t\t\"Tania-L\u00f3pez-Hern\u00e1ndez\"\n

\n\t\tL\u00f3pez Hern\u00e1ndez, Tania\n\t<\/h4>\n

\n\t\tTeam\n\t<\/h2>\n\t\t\t\t\t\t\t\t\t\t\t\tGroup leaders\t\t\t\t<\/a>\n\t\t\t\t\t\t\t\t\t\t\t\tPrincipal investigators\t\t\t\t<\/a>\n\t\t\t\t\t\t\t\t\t\t\t\tPostdoctoral investigators\t\t\t\t<\/a>\n\t\t\t\t\t\t\t\t\t\t\t\tPredoctoral researchers\t\t\t\t<\/a>\n\t\t\t\t\t\tGroup leaders\n\t\t\t\t\t\t\t\t\t\t\t